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Abstract

For a linear potential function one-dimensional constant current drift-diffusion
equations can be integrated in closed form, yielding the Scharfetter-Gummel
(SG) discretization. The box-method generalizes the insistence on exact cur-
rent conservation to higher dimensions by imposing the exact balancing of
Scharfetter-Gummel fluxes through box-faces.

It has long been recognized that the one-dimensional SG discretization de-
fines a finite element method that yields the exact solution by employing closed
form solutions as an approximant. Finite element analyses of the box-method
tend to employ piecewise linear approximating functions and fail to incorporate
the exact integration properties of the SG discretization.

Nevertheless, the current conservation validates for the SG box-method an
analytical coupling limitation for the differential drift-diffusion equations.

1. The Scharfetter-Gummel Discretization

In the discretization of the one-dimensional zero generation recombination drift-
diffusion equations, the Scharfetter-Gummel technique [9] reproduces exactly the
constant current. Let u denote the electrostatic potential ¢ in units of the ther-
mal potential Ur = (kgT)/q, where kp is Boltzmann’s constant, T" is the ambient
temperature, and ¢ is the size of the electron charge. Then, under the assumption of
Finstein’s relations the one-dimensional zero generation-recombination drift-diffusion
equation for the conduction electron density n is given by

[n(nug — ng)lz = 0. (1.1)

The solution n(z) to equation (1.1) can be expressed in terms of a closed form Green’s
function, analogously to the procedure in [7]. To a piecewise linear potential function
Uu(z) with nodal values u; at nodes z; can be associated a vector u. The Scharfetter-
Gummel expression for the one-dimensional electron current I, on an interval [z;_;, ]
with z;— ;-1 = h; is expressed in terms of the Bernouilli function B(z) = z/[exp(z)—
1] as in

1
I; = —h—]#n(uz)kBT[B("m = uj)njp — Blu; — uja)ng. (1.2)

As observed in [4] and elsewhere, the SG approximation coincides with a finite element



238 T. Kerkhoven: On the Scharfetter-Gummel Box-Method

method in which the Slotboom variable v(z) = exp[—u(z)|n(z) is expanded in terms
of nodal, u(z)-dependent basis-functions

(Jz,—s n exp[=u(t)]dt)/([;7_pn exp[—u(t)]dt) if z € [zj1,2)],
&ilz) = {(ff’“ pin exp[—u(t)]dt) /([ kin exp[—u(t)]dt) if 2 € [z, 2j44], (1.3)

0 elsewhere.

Let the vector with components n; solve the SG discretization of (1.1). Then, the
function
n(z) = Y m; explu(z) — ug; o) (14)
i

also solves equation (1.1). Hence, solution of the SG discretization of (1.1) for a
piecewise linear potential Uy(z) yields the exact solution to (1.1). In terms of quasi-
Fermi levels n(z) = exp[u(z) — v(z)], p(z) = explw(z) — u(z)].

2. Box Method Discretization

The prevalence in two and three-dimensional computational codes of the SG box-
method, see e.g. [2, 10, 11, 3], is possibly due to the consistent handling of current
conservation. Discretization by the box-method of the Slotboom variable equations

V- [amexp(w) V4] = 0, (21)
=V [ppexp(—u)Vw] = 0, (2.2)

is defined on a mesh of boxes By dual to the vertices z4 in a mesh of simplexes.
Box-faces fji are planar. Even though the current is not equal to a constant in higher
dimensions, in the Scharfetter-Gummel box-method fluxes through box-faces f;; are
approximated analogously to (1.2), yielding for the electron density vector n

2 Mun[B(uj‘ = wi)nj = B(ui —uj)nl = 0. (2:3)

z, adjacent x; !6{1“

The nodal values of the Slotboom variable v are then given by v; = n; exp[—uy;].

Both in the box-method, and in Galerkin’s equations for a piecewise linear approxi-
mation V;, one component v; of the solution vector v corresponds to every vertex z;
of a simplicial mesh. In the sequel, the notation V,, = ¥ ; v;¢;(z) will be employed
for the piecewise linear interpolant of the vector of nodal values v; at the vertices
z;. With a vector v will also be associated the nodal piecewise polynomial function
Vopy = 2; v;05(2). Finally, define piecewise constant box test-functions vp, () that
are equal to 1 1n the interior of box By and 0 elsewhere.

The analysis of the box-method is simplified significantly by reducing (2.1) on each
element S, in the mesh to the Laplacean by replacing the coefficient u,exp(u) by
a function that assumes elemental average values punexp(u). The boundary condi-
tions are set piecewise linear. In [6] mild conditions are presented under which this
simplified BVP approximates the original BVP (2.1) to sufficient accuracy.

Finite element analysis of the box-method commences with the observation (for two
dimensions in Bank and Rose in [1], for N dimensions in Lemma 2.3 of [6]) that for
box-faces f;; perpendicular to edges e;x in the finite element mesh the perpendicular
bisector box-method Laplacean Element Matrix (LES) is identical to the Petrov-
Galerkin LES for piecewise linear functions with box test-functions ¥, .
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The components of this perpendicular bisector box-method LES, Ep s, , are defined in
terms of box-faces f (Sr normal to edges €;; and delimited by the faces Fy of element

S, by

Sr
Ep,s.ix = (110l ess]) (24)
The components of the corresponding global Petrov-Galerkin stress-matrix are defined
APG,i]‘ = Z Hn exp(u)erB,g,,,-j_. (25)

Sy adjacent e

The analysis in [6] relies on piecewise linearity of the approximant in a generalization
of the two-dimensional results of Bank and Rose in [1] (see also [5]). By the results
in Lemmas 2.1 and 2.2 of [6] the Petrov-Galerkin LES Epg,s, for a linear approx-
imation and test-functions ; that assume on element faces F; the average values
(fp, ¥idz/ [p, dz) = pix can be expressed in terms of the piecewise linear Es, and
the differences ¢;x = pix — (1/N) of the face-averages pix of the test-functions ¥; from
the piecewise linear averages (¢;)r, = (1/N) as in

Epg,s, = [I - NQs,| Ep,s,- (26)

Here the matrix (s, is defined by @s, i = ¢ii, the matrix of the deviations from the
mean of the face-averages py. The equivalence Ep s, = Epgyy,s, and equation (2.6)
imply immediately (see Corollary 2.4 of [6]) that if boxes B; partition equally all faces
F of an N dimensional simplex S,, then Eg s, = E,s,. This observation combined
with equation (2.6) implies that in three dimensions Egs, = Eys, and Qs, = 0 if
and only if S, is a regular tetrahedron.

The error analysis in [6] admits this difference in stress matrices subject to the fol-
lowing equivalences of energies defined by the piecewise linear Galerkin LES F,; s, =

as,(¢i, ¢;) and the box-method LES Eps, defined in (2.4) (here [; Vf-Vgdz =
aSr(f7g) a‘nd utDSru = aSr(‘/pp,U7‘/pp,u)‘)

cs,u’E,,I,g,u < thEB’s,_u, u'Dg u < Cps,u'Ep s, u. (2.7

Piecewise polynomial test-functions g ;(z) that assume appropriate face averages are
substituted for the 95 ;. Inequality (2.8), below, reflects a special case of Theorem
3.1 in [6).

If ¢ < cg,,and Cp > Cpg, in (2.7) on all elements S,. If U solves the simplified
version of (2.1), and the vector v solves the approximate box-method (2.5), then V,
realizes a piecewise linear order of accuracy because for all piecewise linear V4 that
satisfy identical boundary conditions as V,

\//G i exp @]V (Ve — 9)Pdz < [1 4 9;2]\//6 e )V (Ve — 7). (28)

Approximation results from [6] and inequality (2. 8) yield for the function n,(z) =
¥; nj explu(z) — u;]¢p,;(z), defined in terms of a piecewise linear Slotboom variable
vp(z) and the vector n solving the box-method (2.3), a bound similar to (2.8).

3. Equation Coupling and The Scharfetter-Gummel Box-method

The exact current conservation can be employed to validate for the SG box-method
discretization an analogy of a simplified coupling limitation for the drift-diffusion
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equation for electrons from [8]. The mobilities p, and y, are assumed to be functions
of the location z only. In terms of quasi-Fermi levels the system (2.1-2.2) is written
=V [gnexp(u —v)Vov] = 0, (3.1)
=V [upexp(w —u)Vuw] = 0. (3.2)
For: = 1,2, let u; be bounded with square-integrable derivative, let v; be the solution

to (3.1). We introduce the averages @ = %(ul +uq), v = %(vl +v,), and the differences
Au = us — uy, Av = vy —vy. Then for (3.1)

\//G pnexp(t — 0)|VAv|2dz < \//G pin €xp(t — 7)|VAu|2dz (3.3)

The SG box-method discretization of the drift-diffusion equations balances the sum
of one-dimensional constant-current expressions for the fluxes through box-faces. The
following inequality is valid for quasi-Fermi levels on edges e;x, corresponding to the
optimized expansion of the Slotboom variables (1.3).

For ¢ = 1,2, and the vectors u;, let n; solve the SG box-method equations (2.3).
On each edge e;; in the mesh let u be the linear interpolant of the nodal values u;
and u; at the vertices z; and z;, and let v be the univariate quasi-Fermi level v(¢)
corresponding to the conduction-electron density function (1.4). Then

\J Z/ ) exp{é — O]|Au,|2dt > \JZ/;k expli — 0][Av|*dt. (3.4)

273 e €5k
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